Article ID Journal Published Year Pages File Type
7207258 Journal of the Mechanical Behavior of Biomedical Materials 2018 30 Pages PDF
Abstract
The damage and crack resistance improvement of bioactive glass is of prime importance, particularly when applied to the repair of load-bearing bones. The present contribution is focused on the prediction of damage mechanisms and crack resistance under uniaxial compression of bioactive glass matrix composites reinforced with a particulate phase. In order to characterize the effects of voids and particles on the damage mechanisms and the macro-response, a two-step homogenization is performed by considering the two phases existing at two different scales: micro/meso through the homogenization of the porous matrix and then meso/macro through the periodic micro-field approach. The damage in the bioactive glass matrix is computed via an anisotropic stress-based damage model, implemented into a finite element program. Failure resulting of excessive damage accumulation in the bioactive glass matrix is predicted by a critical damage criterion combined with a vanishing element technique. The implication of particles in the toughening mechanism as well as the damage and crack resistance improvement in this class of porous biomaterials is highlighted via a parametric study using the proposed numerical model.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , , ,