Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7207261 | Journal of the Mechanical Behavior of Biomedical Materials | 2018 | 29 Pages |
Abstract
In this study, the effect of thermomechanical processing on microstructure evolution of the indium-containing β-type Ti alloys (Ti-40Nb)-3.5In and (Ti-36Nb)-3.5In was examined. Both alloys show an increased β-phase stability compared to binary alloys due to In additions. This leads to a reduced α''-phase fraction in the solution treated and recrystallized state in the case of (Ti-36Nb)-3.5In and to the suppression of stress-induced α'' formation and deformation twinning for (Ti-40Nb)-3.5In. The mechanical properties of the alloys were subsequently studied by quasistatic tensile tests in the recrystallized state, revealing reduced Young's modulus values of 58 GPa ((Ti-40Nb)-3.5In) and 56 GPa ((Ti-36Nb)-3.5In) compared to 60 GPa as determined for Ti-40Nb. For both In-containing alloys the ultimate tensile strength is in the range of 560 MPa. Due to the suppressed α'' formation, (Ti-40Nb)-3.5In exhibits a linear elastic deformation behavior during tensile loading together with a low Young's modulus and is therefore promising for load-bearing implants.
Related Topics
Physical Sciences and Engineering
Engineering
Biomedical Engineering
Authors
Stefan Pilz, David Geissler, Mariana Calin, Jürgen Eckert, Martina Zimmermann, Jens Freudenberger, Annett Gebert,