Article ID Journal Published Year Pages File Type
7207423 Journal of the Mechanical Behavior of Biomedical Materials 2018 39 Pages PDF
Abstract
The present study focused on the material characterisation of porcine oocytes by experiments combined with an inverse finite-element method (iFEM) approach. In doing so, two different deformation states, compression and indentation, were realised to enable the validation of the numerical model. In addition to classical force-strain relations, geometrical information on the oocyte's surface and volume changes during deformation were collected. These data reveal the typical exponential force-strain behaviour and the highly compressible behaviour of the zona pellucida, imparting overall compressibility to the entire cell. Both force-strain characteristics and geometrical information, along with different combinations of them, were used within the iFEM to identify associated material parameters. As suspected, the identified material parameters show a strong dependence on the information (force-strain relation and/or geometrical information) used in the identification process. Finally, forward finite-element calculations were applied, which verified the quality of the obtained material parameters.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,