Article ID Journal Published Year Pages File Type
7210996 Alexandria Engineering Journal 2018 9 Pages PDF
Abstract
In the present article, the problem of boundary layer flow of MHD electrically conducting fluid past a cone and a wedge with non-uniform heat source/sink along with Cattaneo-Christov heat flux is investigated numerically. At first, the flow equations are converted into ODE via appropriate self similarity transforms and the resulting equations are solved with the assistance of R.-K. and Newton's methods. The influence of several dimensionless parameters on velocity and temperature fields in addition to the friction factor and reduced heat transfer coefficient has been examined with the support of graphs and numerical values. The heat transfer phenomenon in the flow caused by the cone is excessive when compared to the wedge flow. Also, the thermal and momentum boundary layers are not the same for the flow over a cone and wedge.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,