Article ID Journal Published Year Pages File Type
7211009 Alexandria Engineering Journal 2017 13 Pages PDF
Abstract
This paper presents experimental modal analysis of non-rotating tires under different boundary conditions. A test rig with four guides in vertical (radial) direction and two guides in axial direction was designed to support the tire-rim assembly with a free support. The setup permits to carry out the experiments on the grounded supported tire-rim assembly while changing the value of the static load acting on the wheel axis. Under static load condition, it is found that, tire deflection depends on the applied static radial force in a hysteresis manner and a third-order polynomial was used to fit the data during loading and unloading conditions. The relationship between static stiffness in radial direction and tire deflection is nonlinear and depends on loading/unloading conditions for different tire pressures. The response of the tire is quite similar to the response of viscously damped mass system for impulse force which is provided by an impact hammer. The results show that the system modal parameters can be obtained respective of loading or unloading conditions with a maximum difference of 1.992% for frequency values and 3.66% for damping values. This study has a practical value for the description of mechanical properties of tires.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,