Article ID Journal Published Year Pages File Type
7211839 Composites Part B: Engineering 2018 7 Pages PDF
Abstract
Eutectic high entropy composites (EHECs) are novel class of material with excellent combination of strength and ductility, thus having a large potential for industrial applications. However, the mechanisms operating behind the trade-off between strength and ductility has not been investigated in detail. In this work, the influence of severe straining imposed by high-pressure torsion (HPT) was evaluated for a series of CoCrFeNiNbx alloys with varying Nb content (x molar ratio), hypoeutectic (x = 0.25), eutectic (x = 0.65) and hypereutectic (x = 0.80) compositions. Strain rate sensitivity (m) and activation volume (V*) calculations were calculated from constant strain rate (CSR) nanoindentation experiments, revealing that dislocation interaction with lamellae interfaces become the rate-limiting step for the strength-ductility trade-off in these EHECs.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , ,