Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7211852 | Composites Part B: Engineering | 2018 | 36 Pages |
Abstract
In this article, a method allowing vibro-acoustic and ultrasonic wave propagation analysis of highly anisotropic textile composites at a mesoscopic level is presented for the first time. The method combines the advantages of mode-based Component Mode Synthesis (CMS) that allows reduction of the size of the Dynamic Stiffness Matrix (DSM) of a textile unit cell, and of a Wave Finite Element Method (WFEM), which associates the Periodic Structure Theory (PST) with standard Finite Element Method (FEM). The scheme presented allows the study of the wave propagation properties of a periodic structure by modelling only a unit cell. A multi-scale approach is used to enable the comparison of standard vibrational analysis of textile composite structures, using homogenised properties, with a more complex analysis, where the mesoscale properties of the structure are preserved. It is shown for two different types of weaves that using a standard homogenised model results in significant errors in the dispersion curves. Also band-gap behaviour within specific frequency ranges are successfully predicted using the mesoscale models, whereas it was not observed in the macroscale ones.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
V. Thierry, L. Brown, D. Chronopoulos,