Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7211946 | Composites Part B: Engineering | 2018 | 31 Pages |
Abstract
A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite was successfully fabricated by selective laser melting (SLM). The results show that the Q phase forms in the matrix of the as-fabricated TiB2/Al-3.5Cu-1.5Mg-1Si composite. After T6 heat treatment, the Q phase disappears and the AlxMny, Mg2Si and Al2Cu(Mg) phases are formed. The same results can be observed before and after heat treatment in the unreinforced Al-Cu-Mg-Si alloy. EBSD and TEM analyses indicate that the addition of the TiB2 particles results in a remarkable grain refinement, leading to enhanced strength of the TiB2/Al-Cu-Mg-Si composite in comparison to the unreinforced Al-Cu-Mg-Si alloy in both the as-fabricated and heat-treated conditions. Both grain refinement and Orowan strengthening contribute to the high strength of the heat treated TiB2/Al-Cu-Mg-Si composite.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino,