Article ID Journal Published Year Pages File Type
7215385 Composites Science and Technology 2015 25 Pages PDF
Abstract
Hybrid hierarchical carbon-nanotube (CNT)-based composites, such as radially-aligned CNT arrays grown onto microfiber filaments, have significant potential to expand the performance and functionality of fiber reinforced composites. Here, a novel method for high-yield growth of aligned CNTs on aerospace-grade carbon fibers (CFs) is demonstrated at the composite level for the first time. Fuzzy carbon fiber reinforced plastics (fuzzy CFRP) unidirectional composites with >60% microfiber volume fraction are fabricated via vacuum-assisted resin infusion of CNT-grafted tows using an unmodified aerospace-grade epoxy. Preservation of microfiber tensile modulus and strength are demonstrated by longitudinal composite tensile testing, consistent with single-fiber tensile tests. Fiber-matrix interface strength is also unchanged by the CNT growth as revealed through continuously-monitored fiber fragmentation tests. Taken together, the results provide needed new composite-level understanding of hierarchical structural composite laminates and motivate future work on structural CF composite laminates with integrated multifunctionality and improved interlaminar and intralaminar performance.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,