Article ID Journal Published Year Pages File Type
721563 IFAC Proceedings Volumes 2007 6 Pages PDF
Abstract

A nonlinear adaptive approach is presented to achieve rest-to-rest attitude maneuvers for spacecrafts in the presence of parameter uncertainties and unknown disturbances. A nonlinear controller, designed on the principle of dynamic inversion achieves the goals for the nominal model but suffers performance degradation in the presence of off-nominal parameter values and unwanted inputs. To address this issue, a model-following neuro-adaptive control design is carried out by taking the help of neural networks. Due to the structured approach followed here, the adaptation is restricted to the momentum level equations. The adaptive technique presented is computationally nonintensive and hence can be implemented in real-time. Because of these features, this new approach is named as structured model-following adaptive real-time technique (SMART). From simulation studies, this SMART approach is found to be very effective in achieving precision attitude maneuvers in the presence of parameter uncertainties and unknown disturbances.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics