Article ID Journal Published Year Pages File Type
721567 IFAC Proceedings Volumes 2007 6 Pages PDF
Abstract

This paper introduces a reformulation to design full-matrix Quantitative Feedback Theory (QFT) controllers for multi-input-multi-output (MIMO) plants with model uncertainty. It considers a double-step procedure: an inverse-based decoupling and a consecutive loop-by-loop quantitative robust control design. The method generalizes several previous non-diagonal MIMO QFT techniques, avoiding some required prior hypotheses of such former methods, and simplifies the design procedure. It deals with two classical control problems: reference tracking and disturbance rejection at plant output. The paper ends applying the new technique to the design of a MIMO controller for a spacecraft flying in a formation that is moving with respect to a central body in a circular orbit.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics