Article ID Journal Published Year Pages File Type
7216026 Composites Science and Technology 2009 7 Pages PDF
Abstract
Single fibre fragmentation tests were performed at room temperature on SiC/Ti-6242 specimens in order to estimate the in situ fibre strength. Tensile specimens were instrumented with two acoustic emission transducers and an extensometer in order to monitor the strain at which fibre breaks occurred. Data analysis utilized Monte Carlo simulations of fibre fragmentation. The fibre/matrix stress transfer profile near a fibre break was derived using a finite element analysis. Cohesive zone model is used to describe damage of the interfacial zone. Thermally induced residual stresses and matrix plastic deformations were accounted for. The results presented in this paper show that the in situ Weibull parameters of the fibre are smaller than the reference obtained on as received fibres. Analysis of data raised questions about the validity of the Monte Carlo simulation method.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,