Article ID Journal Published Year Pages File Type
7216074 Comptes Rendus Mécanique 2018 10 Pages PDF
Abstract
This paper presents a systematic research for understanding mechanical shearing effects on the fluid flow and the solute transport behavior of rough fractures through a numerical simulation approach. The aperture fields were modeled based on a real rock fracture geometry and the normal displacement obtained from the shear-flow test. The fluid flow through the rough fracture under shear was simulated using a finite element code that solves the Reynolds equation, and the transport behavior through the rough fracture under shear was simulated calculating the advection-dispersion equation. The results show that the fracture apertures increase as the shear displacement increases, with a few major flow channels detected through the fracture. The shear-induced flow channels increase both flow connectivity and transport connectivity, which accelerate the movement of solutes in a particular direction and lead to early breakthrough of the contaminants. Adsorption, acting as a retardation term, has a decisive influence on the transport process. These results can give a basic knowledge of the hydromechanical and solute transport progress through fracture, and will be helpful to safety assessment for high-level radioactive waste disposal facilities.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,