Article ID Journal Published Year Pages File Type
7216442 Journal of Bionic Engineering 2017 11 Pages PDF
Abstract
The paper revealed the fine structure of the scorpion (Mesobuthus martensii) pectines and showed how the fine structure of the pecten influences odor flow. The first step of our investigation was to prove that scorpion pectines work as olfactory and this was done via experiments utilizing paraffin coverage. Subsequently, the location, morphology, section structure, and arrangement of the pectines were studied via stereomicroscopy and Scanning Electron Microscopy (SEM). The fine structure of pecten comprises a comb-like structure with 24-30 knife-like teeth and thousands of micron bowl-like pecten sensilla in staggered arrangement on the surface of the tooth. Computational Fluid Dynamics (CFD) was applied to predict odor flow around the pecten via the relevant Reynolds numbers. The comb-like structure amplified the odor flow velocity similar to an amplifier, transporting the odor flow of increased velocity to the micron pecten sensilla, improving transport efficiency of the odor flow. The staggered arrangement of the pecten sensilla generated a vortex, improving contact duration between pecten sensilla and odorant molecules. Thus, the pecten fine structure was likely acting as an effective comb with non-smooth teeth for the transport and capture of odorant molecules.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , , , , ,