Article ID Journal Published Year Pages File Type
7220882 Materials & Design (1980-2015) 2014 11 Pages PDF
Abstract
The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2Nf) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was indicated that the fatigue crack initiation occurred from the specimen surface and all specimens were ductile-brittle mixed fractures. It is deemed that the softening behavior in BL caused by twice tempering correspondingly decreased the LCF lifetime at higher strain amplitudes. So suitable welding parameters and heat treatment processes became a key measure to ensure LCF property without losing other properties for welded joint with BL.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , ,