Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7222743 | Nonlinear Analysis: Theory, Methods & Applications | 2016 | 23 Pages |
Abstract
The paper puts forward new Besov spaces of variable smoothness Bp,qÏ0(G,{tk}) and BËp,q,rl(Ω,{tk}) on rough domains. A domain G is either a bounded Lipschitz domain in Rn or the epigraph of a Lipschitz function, a domain Ω is an (ε,δ)-domain. These spaces are shown to be the traces of the spaces Bp,qÏ0(Rn,{tk}) and BËp,q,rl(Rn,{tk}) on domains G and Ω, respectively. The extension operator Ext1:Bp,qÏ0(G,{tk})âBp,qÏ0(Rn,{tk}) is linear, the operator Ext2:BËp,q,rl(Ω,{tk})âBËp,q,rl(Rn,{tk}) is nonlinear. As a corollary, an exact description of the traces of 2-microlocal Besov-type spaces and weighted Besov-type spaces on rough domains is obtained.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
A.I. Tyulenev,