Article ID Journal Published Year Pages File Type
7227096 Procedia Engineering 2017 6 Pages PDF
Abstract
Modelling of this phenomenon with E-modulus degradation is fundamentally incorrect and only gives a fair strain prediction after completely unloading the material. In springback situations, inner fibres of the sheet material are partly unloaded and outer fibres are even reloaded in compression. Therefore, a model is required that includes the amount of plastic pre-loading and the amount of unloading separately. For implementation of the model in a finite element code, it needs to be formulated in the complete 6-dimensional stress space and not only for uniaxial stresses. A model is presented that can be applied for arbitrary strain paths and that is consistent with the main observations in uniaxial loading-unloading-reloading experiments.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,