Article ID Journal Published Year Pages File Type
7229614 Biosensors and Bioelectronics 2018 7 Pages PDF
Abstract
17β-estradiol (17β-E2) plays a critical role in regulating reproduction in human, there is therefore an urgent need to detect it sensitively and precisely in a cost-effective and easy method. In this paper, a label-free integrated microfluidic paper-based analytical device was developed for highly sensitive electrochemical detection of 17β-E2. The microfluidic channel of the paper-based sensor was fabricated with wax printing and the three electrodes, including working, counter and reference electrode were screen-printed. Multi-walled carbon nanotubes (MWCNTs)/ thionine (THI)/ gold nanoparticles (AuNPs) Nano composites were synthesized and coated on screen-printed working electrode (SPWE) for the immobilization of anti-E2. In this electro-chemical system of paper-based immunoassay, THI molecules serving as an electrochemical mediator while MWCNTs and AuNPs, due to their excellent electrical conductivities, could accelerate electron transfer for the signal amplification. Experimental results revealed that the immunoassay is able to detect 17β-E2 as low as 10 pg mL−1, with a linear range from 0.01 to 100 ng mL−1. This microfluidic paper-based immunosensor would provide a new platform for low cost, sensitive, specific, and point-of-care diagnosis of 17β-E2.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,