Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7229648 | Biosensors and Bioelectronics | 2018 | 7 Pages |
Abstract
In this work, a nanocomposite of gold nanoparticles (AuNPs), carbon nano-onions (CNOs), single-walled carbon nanotubes (SWCNTs) and chitosan (CS) (AuNPs/CNOs/SWCNTs/CS) was prepared for the development of highly sensitive electrochemical immunosensor for the detection of carcinoembryonic antigen (CEA), clinical tumor marker. Firstly, layer-by-layer fabrication of the CEA-immunosensors was studied using cyclic voltammetry (CV) and square wave voltammetry (SWV). By combining the advantages of large surface area and electronic properties of AuNPs, CNOs, SWCNTs, and film forming properties of CS, AuNPs/CNOs/SWCNTs/CS-nanocomposite-modified glassy carbon electrode showed a 200% increase in effective surface area and electronic conductivity. The calibration plot gave a negative linear relationship between log[concentration] of CEA and electrical current with a correlation coefficient of 0.9875. The CEA-immunosensor demonstrated a wide linear detection range of 100â¯fgâ¯mLâ1 to 400â¯ngâ¯mLâ1 with a low detection limit of 100â¯fgâ¯mLâ1. In addition to high sensitivity, reproducibility and large stability, CEA-immunosensor provided an excellent selectivity and resistant-to-interference in the presence of other antigens in serum and hence a potential to be used with real samples.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Mohammad Rizwan, Syazwani Elma, Syazana Abdullah Lim, Minhaz Uddin Ahmed,