Article ID Journal Published Year Pages File Type
7229870 Biosensors and Bioelectronics 2018 7 Pages PDF
Abstract
The disposition dose of clopidogrel is different in CYP2C19*2 gene carriers and non-carriers. High-dose clopidogrel has been recommended to overcome a low-responsiveness to clopidogrel in patients with the CYP2C19*2 gene. To guide the choice of clopidogrel dosage and catalyse a development in the field of personalized therapy, we developed an ultrasensitive electrochemical biosensor to detect CYP2C19*2 gene. We constructed a novel assay based on cerium dioxide (CeO2)-functionalized carboxyl fullerene (c-C60) supported by Pt nanoparticles (c-C60/CeO2/PtNPs) for signal amplification. Au nanoparticles @ Fe-MIL-88NH2 (AuNPs@Fe-MOFs) were synthesized by one-step method as the support platform to enhance the conductivity and immobilize more biotin-modified capture probe (bio-CP) through the superior affinity and specificity between streptavidin and biotin. c-C60/CeO2/PtNPs were labeled with signal probe to form the signal label. After the sandwich reaction of CYP2C19*2 gene between capture probe and the signal label, a distinguishing electrochemical signal from the catalysis of H2O2 by signal label would be observed. Amperometry was applied to record electrochemical signals. Under optimized conditions, the approach showed a good linear dependence between current and the logarithm of CYP2C19*2 gene concentrations in the range of 1 fM to 50 nM with a low detection limit of 0.33 fM (S/N = 3). The proposed method showed good specificity to target DNA compared with possible interfering substances. More importantly, the fabricated biosensor achieved accurate quantitative detection of CYP2C19*2 gene in human serum samples demonstrated by excellent correlations with standard DNA sequencing and provided a promising strategy for electrochemical biosensor detection of other gene mutations.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,