Article ID Journal Published Year Pages File Type
7229928 Biosensors and Bioelectronics 2018 20 Pages PDF
Abstract
We designed an amplified detection strategy for the sensitive determination of lead ions (Pb2+) based on a target-triggered nuclear acid cleavage of Pb2+-specific DNAzyme as a selectivity interface combined with Pd-Pt alloys modified Fe-MOFs (Fe-MOFs/PdPt NPs) hybrids acting as the signal tag. Streptavidin modified reduced graphene oxide-tetraethylene pentamine-gold nanoparticles (rGO-TEPA-Au) served as a sensor platform for immobilizing more DNAzyme. In the presence of Pb2+, the substrate DNA strand can be specifically cleaved at the ribonucleotide site by DNAzyme to produce a new single-DNA on the interface. Then, the hairpin DNA with hybrid strand matched by its complement to the single-DNA was employed to modify the Fe-MOFs/PdPt NPs bioconjugates for signal amplification. Fe-MOFs/PdPt NPs catalyze hydrogen peroxide (H2O2) to produce the electrochemical signal which was recorded by chronoamperometry. Benefiting from the Pb2+-dependent DNAzyme, the proposed method can selectively detect Pb2+ in the presence of other metal ions. The newly designed biosensor exhibited a good linear relationship ranging from 0.005 to 1000 nmol L−1 with a low detection limit of 2 pM (S/N = 3) for Pb2+. This Pb2+-dependent DNAzyme based ultrasensitive biosensor showed high sensitivity and selectivity, providing potential application for Pb2+ detection in naturally contaminated sewage and spiked drinking water samples.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , ,