Article ID Journal Published Year Pages File Type
7230025 Biosensors and Bioelectronics 2016 13 Pages PDF
Abstract
Reactive oxygen species (ROS) and changes in their redox cycles have great therapeutic potential for treating serious redox-related human diseases such as acute and chronic inflammation, diabetes, cancer and neurodegenerative disorders. This article presents a survey of the recently (2011-2016) developed NIR small-molecule biosensors for reversibly monitoring oxidation and reduction events in living cells and small animals through in vitro/in vivo fluorescence imaging. Emission and absorption profile, design strategy and fluorescence sensing mechanism, ROS selectivity and sensitivity, reversibility, ability of subcellular location and cytotoxicity are discussed for the NIR small-molecule biosensors capable of quantitatively, continuously and reversibly detecting transient ROS burst and redox changes at cellular level.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,