Article ID Journal Published Year Pages File Type
7230066 Biosensors and Bioelectronics 2016 21 Pages PDF
Abstract
Sensitive and rapid detection of Escherichia coli O157:H7, one of the most notorious bacterial pathogens, is urgently needed for public health protection. Yet, the existing methods are either lack of speed or limited in discriminating viable and dead cells. Using a recombinant bacteriophage, here we report the development of a rapid and sensitive method for live E. coli O157:H7 detection. First, the wild-type PP01 phage was engineered with a tetracysteine (TC)-tag fused with the small outer capsid (SOC) protein. Then, this PP01-TC phage was used to inoculate bacterial sample for 30 min. Specific infection and rapid replication of PP01-TC phage in viable E. coli O157:H7 host cell yields a large number of progeny phages with capsids displaying TC tags that can be fluorescently labeled by a membrane permeable biarsenical dye (FlAsH). The bright green fluorescence of single E. coli O157:H7 cells can be readily detected by flow cytometry (FCM) and fluorescence microscopy. High specificity of the assay was verified with seven other bacterial strains. Practical application in E. coli O157:H7 detection in drinks was successfully demonstrated with artificially contaminated 100% apple juice. In less than three hours (including sample preconcentration) and with 40 mL of sample volume, as low as 1 cfu/mL E. coli O157:H7 can be detected in the presence of large excess of other nontarget bacteria via fluorescence microscopic measurement. The as-developed TC-PP01-FlAsH approach shows a great potential in the safeguard of liquid food products by providing rapid, sensitive, and specific detection of live E. coli O157:H7.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,