Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7230135 | Biosensors and Bioelectronics | 2017 | 7 Pages |
Abstract
A label-free and enzyme-free surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive and specific detection of target DNA by employing the nonlinear hybridization chain reaction (HCR) amplification. Nonlinear HCR is a hairpin-free system in which double-stranded DNA monomers could dendritically assemble into highly branched nanostructure upon introducing a trigger sequence. The target DNA partly hybridizes with capture probe on the gold sensing chip and the unpaired fragment of target DNA works as a trigger to initiate the nonlinear HCR, forming a chain-branching growth of DNA dendrimer by self-assembly. Real-time amplified SPR response is observed upon the introduction of nonlinear HCR system. The method is capable of detecting target DNA at the concentration down to 0.85 pM in 60Â min with a dynamic range from 1 pM to 1000 pM, and could discriminate target DNA from mismatched sequences. This biosensing strategy exhibits good reproducibility and precision, and has been successfully applied for detection of target DNA in complex sample matrices. In addition, the nonlinear HCR based SPR biosensing methodology is extended to the detection of adenosine triphosphate (ATP) by aptamer recognition. Thus, the versatile method might become a potential alternative tool for biomolecule detection in medical research and early clinical diagnosis.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Xiaojuan Ding, Wei Cheng, Yujian Li, Jiangling Wu, Xinmin Li, Quan Cheng, Shijia Ding,