Article ID Journal Published Year Pages File Type
7230301 Biosensors and Bioelectronics 2017 8 Pages PDF
Abstract
Herein, a novel upconversion@polydopamine core@shell nanoparticle (termed as UCNP@PDA NP) -based aptameric biosensor has been fabricated for the quantitative analysis of cytochrome c (Cyt c) inside living cells, which comprises an UCNP@PDA NP, acting as an internal reference and fluorescence quenching agent, and Cy3 modified aptamer enabling ratiometric quantitative Cyt c measurement. After the hybridization of Cy3 labeled aptamer with amino-terminated single DNA on the UCNP@PDA NP surface (termed as UCNP@PDA@AP), the fluorescence of Cy3 can be efficiently quenched by the PDA shell. With the spontaneous cellular uptake of UCNP@PDA@AP, the Cyt c aptamer dissociates from UCNP@PDA NP surface through formation of aptamer-Cyt c complex, resulting in concomitant activation of the Cy3 fluorescence. High amount of Cyt c leads to high fluorescence emission, enabling direct visualization/measurement of the Cyt c by fluorescence microscopy/spectroscopy. The steady upconversion luminescent (UCL) signals can be employed not only for intracellular imaging, but also as an internal reference for evaluating intracellular Cyt c amount using the ratio of fluorescence intensity of Cy3 with the UCL intensity of UCNP. The UCNP@PDA@AP shows a reasonable detection limit (20 nM) and large dynamic range (50 nM to 10 μM, which covers the literature reported values (1-10 μM) for cytosolic Cyt c in apoptotic cells) for detecting Cyt c in buffer with excellent selectivity. In addition, the UCNP@PDA@AP has been successfully used to monitor etoposide induced intracellular releasing of Cyt c, providing the possibility for cell-based screening of apoptosis-inducing drugs.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,