Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7231327 | Biosensors and Bioelectronics | 2016 | 8 Pages |
Abstract
Hierarchical NiCo2O4 hollow nanorods (HR) were directly grown on stainless steel via a sacrificial template accelerated hydrolysis and post calcination using ZnO nanorod as a template. The composition of the NiCo2O4 HR electrode was determined using X-ray diffraction and X-ray photoelectron spectroscopy. The morphology of the NiCo2O4 HR is comprised of nanoflakes that were characterized with scanning electron microscopy and transmission electron microscopy. The mixed-valence metal oxide and hollow structure provided high chemical reactivity and a large surface area for glucose oxidation in an alkaline solution. Under an optimal applied potential of +0.6 V, the developed NiCo2O4 HR electrode showed a broad detection range of 0.0003-1.0 mM, a sensitivity of 1685.1 μA mMâ1 cmâ2, and a low detection limit of 0.16 μM. These results represent a significant improvement over both NiO and Co3O4 HR. The developed NiCo2O4 HR electrode not only demonstrated excellent selectivity in the presence of several electro-active species, but also exhibited high stability following a 200 cycles voltammetry test.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Jiao Yang, Misuk Cho, Youngkwan Lee,