Article ID Journal Published Year Pages File Type
7231451 Biosensors and Bioelectronics 2016 23 Pages PDF
Abstract
Rapid detection of bacterial growth is an important issue in the food industry and for medical research. Here we present a novel kind of pH-sensitive fluorescent nanoparticles (FANPs) that can be used for the rapid and accurate real-time detection of Escherichia coli growth. These organic particles are designed to be non-toxic and highly water-soluble. Here we show that the coupling of pH sensitive fluoresceinamine to the nanoparticles results in an increased sensitivity to changes in pH within a physiologically relevant range that can be used to monitor the presence of live bacteria. In addition, these FANPs do not influence bacterial growth and are stable over several hours in a complex medium and in the presence of bacteria. The use of these FANPs allows for continuous monitoring of bacterial growth via real-time detection over long time scales in small volumes and can thus be used for the screening of a large number of samples for high-throughput applications such as screening for the presence of antibiotic resistant strains.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,