Article ID Journal Published Year Pages File Type
7231494 Biosensors and Bioelectronics 2016 29 Pages PDF
Abstract
A benzoperylene probe excimer emission in an aqueous buffer solution is observed for the first time, and a novel ratiometric fluorescence method based on the probe excimer emission for the sensitive detection of heparin and heparinase is demonstrated. A negatively charged benzoperylene derivative, 6-(benzo[ghi]perylene-1,2-dicarboxylic imide-yl)hexanoic acid (BPDI), was employed. A polycation, poly(diallyldimethylammonium) chloride (poly-DDA), could induce aggregation of BPDI through noncovalent interactions. A decrease of BPDI monomer emission and a simultaneous increase of BPDI excimer emission were observed. Upon the addition of heparin, the strong binding between heparin and poly-DDA caused release of BPDI monomer molecules, and an excimer-monomer emission signal transition was detected. However, after the enzymatic hydrolysis of heparin by heparinase, heparin was hydrolyzed into small fragments, which weakened the competitive binding of heparin to poly-DDA. Poly-DDA induced aggregation of BPDI, and a monomer-excimer emission signal transition was detected. Our assay is simple, rapid, inexpensive, sensitive and selective, which could facilitate the heparin and heparinase related biochemical and biomedical research.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , ,