Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7232423 | Biosensors and Bioelectronics | 2015 | 6 Pages |
Abstract
This work investigated the interactions of α-Fe2O3 nanoparticles (NPs) with different structural nucleic acids and their fluorescence quenching ability towards fluorophore-labelled nucleic acid probes. Different from bulk α-Fe2O3 samples, nanoscale α-Fe2O3 particles exhibit the unique properties of strong adsorption and fluorescence quenching to fluorophore-labelled single-stranded DNA (ssDNA) probes. Based on these findings, a facile fluorescence method was developed for versatile quantification of nucleic acids. The size scale of NPs makes a significant impact on this sensing platform. Better selectivity was given by bigger NP (50-100 nm)-based nucleic acid-sensing platform compared with smaller NP (30 nm)-based one. In the 50-100 nm α-Fe2O3 NP-based sensing platform, single nucleotide mismatch or single base-pair mismatch can even be effectively discriminated. The targets of micro-RNA (miRNA), ssDNA and double-stranded DNA (dsDNA) are sensitively detected with detection limits of 0.8 nM, 1.1 nM and 0.64 nM (S/N=3), respectively. Significantly, α-Fe2O3 NPs possess different affinities towards ssDNA probes with different lengths, and can be used as a universal quencher for ssDNA probes labelled with different fluorescent dyes. On the basis of these properties, the pristine α-Fe2O3 NPs hold the potential to be widely utilized in the development of novel biosensors with signal amplification or simultaneous multiple target detection strategies.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Chan Song, Guan-Yao Wang, De-Ming Kong,