Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7232780 | Biosensors and Bioelectronics | 2015 | 7 Pages |
Abstract
Novel self-assembled dipeptide-gold nanoparticle (DP-AuNP) hybrid microspheres with a hollow structure have been prepared in aqueous solution by a simple one-step method. Diphenylalanine (FF) dipeptide was used as a precursor to form simultaneously peptide spheres and a reducing agent to reduce gold ions to gold nanoparticles in water at 60 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that formed AuNPs were localized both inside and on the surface of the dipeptide spheres. Horseradish peroxidase (HRP) as a model enzyme was further immobilized on the dipeptide-AuNP hybrid spheres to construct a mediate H2O2 amperometric biosensor. UV-vis spectroscopy showed that the immobilized HRP retained its original structure. Cyclic voltammetry characterization demonstrated that the HRP/dipeptide-AuNP hybrid spheres modified glassy carbon electrode showed high electrocatalytic activity to H2O2. The proposed biosensor exhibited a wide linear response in the range from 5.0Ã10â7 to 9.7Ã10â4 M with a high sensitivity of 28.3 µA mMâ1. A low detection limit of 1.0Ã10â7 M was estimated at S/N=3. In addition, the biosensor possessed satisfactory reproducibility and long-term stability. These results indicated that the dipeptide-AuNP hybrid sphere is a promising matrix for application in the fabrication of electrochemical biosensors due to its excellent biocompatibility and good charge-transfer ability.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Yufei Gong, Xu Chen, Yanluo Lu, Wensheng Yang,