Article ID Journal Published Year Pages File Type
7232828 Biosensors and Bioelectronics 2015 6 Pages PDF
Abstract
Carbon nanodots and CoFe layered double hydroxide composites (C-Dots/LDHs) were prepared via simply mixing C-Dots and CoFe-LDHs. The as-prepared composites were used for the immobilization of horseradish peroxidase (HRP) on the glass carbon (GC) electrode. The electrochemical behavior of the HRP/C-Dots/LDHs/GC electrode and its application as a H2O2 biosensor were investigated. The results indicated that HRP immobilized by C-Dots/LDHs retained the activity of enzyme and displayed quasi-reversible redox behavior and fast electron transfer with an electron transfer rate constant ks of 8.46 s−1. Under optimum experimental conditions, the HRP/C-Dots/LDHs/GC electrode displayed good electrocatalytic reduction activity and excellent analytic performance toward H2O2. The H2O2 biosensor showed a linear range of 0.1-23.1 μM (R2=0.9942) with a calculated detection limit of 0.04 μM (S/N=3). In addition, the biosensor exhibited high sensitivity, good selectivity, acceptable reproducibility and stability. The superior properties of this biosensor are attributed to the synergistic effect of HRP, C-Dots and CoFe-LDHs, which has been proved by investigating their electrochemical response to H2O2. Thus the C-Dots and LDHs composites provide a promising platform for the immobilization of redox enzymes and construction of sensitive biosensors.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,