Article ID Journal Published Year Pages File Type
7233192 Biosensors and Bioelectronics 2014 21 Pages PDF
Abstract
Here, we report a simple and reproducible method for large scale fabrication of novel flower and palm-leaf like 3D cystine microstructures (CMs) with high uniformity having a size of 50 µm and 10 µm respectively, through a facile aqueous solution route as a function of pH and concentration. In a proof-of-concept study, the 3D CMs have been further explored to fabricate a label-free high-performance electrochemical immunosensor by immobilizing monoclonal antibodies. Electrochemical methods were employed to study the stepwise modification of the system and the electronic transduction for the detection. The fabricated immunosensor design demonstrates high performance with enhanced sensitivity (4.70 cfu ml−1) and linear sensing range from 10 to 3 x 109 cfu ml−1 a long shelf-life (35 days) and high selectivity over other bacterial pathogens. The enhanced performance originates from a novel nanostructuring in which the CMs provide higher surface coverage for the immobilization of antibodies providing excellent electronic/ionic conductivity which result in the enhanced sensitivity.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,