Article ID Journal Published Year Pages File Type
7233254 Biosensors and Bioelectronics 2015 6 Pages PDF
Abstract
Novel, fluorescence-free detection of biomolecules on nanobiochips was investigated based on plasmonic nanometal scattering in the evanescent field layer (EFL) using total internal reflection scattering (TIRS) microscopy. The plasmonic scattering of nanometals bonded to biomolecules was observed at different wavelengths by an electromagnetic field in the EFL. The changes in the scattering of nanometals on the gold-nanopatterned chip in response to the immunoreaction between silver nanoparticles and antibodies allowed fluorescence-free detection of biomolecules on the nanobiochips. Under optimized conditions, the TIRS immunoassay chip detected different amounts of immobilized antigen, i.e., human cardiac troponin I. The sandwich immuno-reaction was quantitatively analyzed in the dynamic range of 720 zM-167 fM. The limit of detection (S/N=4) was 600 zM, which was ~140 times lower than limits obtained by previous total internal reflection fluorescence and dark field methods. These results demonstrate the possibility for a fluorescence-free biochip nanoimmunoassay based on the scattering of nanometals in the EFL.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,