Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7233342 | Biosensors and Bioelectronics | 2015 | 6 Pages |
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is often overexpressed in human malignant tumors as an indicator for tumor angiogenesis. Here by the photoinduced electron transfer (PET) between DNA-Ag fluorescent nanoclusters (NCs) and G-quadruplex/hemin complexes, we present a sensitive label-free fluorescent sensor for PDGF-BB. In the presence of PDGF-BB, the specific conjugation with its aptamer induced the conformational change of the duplex-like DNA sequence, releasing the G-quadruplex sequence part. Then in the presence of hemin and K+, the horseradish peroxidase mimicking DNAzyme (HRP-DNAzyme) was formed. With the electron transfer between the DNA-Ag NCs to the hemin Fe (III) center of HRP-DNAzyme, the PET occurred with a decrease in the fluorescence intensity of the DNA-Ag NCs. The detection performance such as selectivity, linear dynamic range, sensitivity, and the quenching capability of HRP-DNAzyme were estimated. The detection range for PDGF-BB is from 5Ã10â13 to 1Ã10â8Â M and the detection limit is 1Ã10â13Â M. The experimental results confirmed that the novel fluorescent aptasensor possessed a good sensitivity and high selectivity for PDGF-BB. In addition, the developed probe is nontoxic, label-free only involving one-step hybridization without sophisticated fabrication process. Furthermore, based on this quenching mode occurred by PDGF-BB and hemin, using PDGF-BB and hemin as inputs and the fluorescence signal as an output, a logic gate has been fabricated.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Guangfeng Wang, Yanhong Zhu, Ling Chen, Xiaojun Zhang,