Article ID Journal Published Year Pages File Type
7233374 Biosensors and Bioelectronics 2014 18 Pages PDF
Abstract
A microbial fuel cell (MFC) is a bio-electrochemical converter that can extract electricity from biomass by the catabolic reaction of microorganisms. This work demonstrates the impact of a small characteristic length in a Geobacteraceae-enriched, micro-scale microbial fuel cell (MFC) that achieved a high power density. The small characteristic length increased the surface-area-to-volume ratio (SAV) and the mass transfer coefficient. Together, these factors made it possible for the 100-µL MFC to achieve among the highest areal and volumetric power densities - 83 μW/cm2 and 3300 μW/cm3, respectively - among all micro-scale MFCs to date. Furthermore, the measured Coulombic efficiency (CE) was at least 79%, which is 2.5-fold greater than the previously reported maximum CE in micro-scale MFCs. The ability to improve these performance metrics may make micro-scale MFCs attractive for supplying power in sub-100 µW applications, especially in remote or hazardous conditions, where conventional powering units are hard to establish.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,