Article ID Journal Published Year Pages File Type
7233549 Biosensors and Bioelectronics 2014 18 Pages PDF
Abstract
Easy, sensitive, rapid and low cost ochratoxin biosensors are strongly demanded in food analysis since Ochratoxin A (OTA) is a widely diffused food contaminant, highly detrimental for human health. In this work, a novel plasmonic based optical biosensor prototype for ochratoxin A is described. It exploits the metal-enhanced fluorescence phenomenon due to the silver film over nanosphere plasmonic substrate. Since ochratoxin A could be present in different food commodities, sensor performances have been tested on three different matrices (dried milk, juices, and wheat mix). Firstly, a common OTA extraction solvent and a labeling and detection protocol were defined for the analyzed matrices. Then, the efficiency of the Ag-FON surfaces in signal amplification for the detection of low ochratoxin A concentrations was defined. Using samples spiked with OTA-AF 647 or with unlabeled OTA we were able to detect the mycotoxin at concentrations lower than E.U. specifications of 0.5 μg/kg in wheat, milk and apple juice. The test performances are comparable to those of ELISA kits but the platform presented here, once optimized, present some perspective advantages, such as: low cost and time consuming, versatility of the protocol for the investigation of different matrices, employment also in non-qualified laboratories, small dimensions that allow its integration in a compact device for OTA on-site detection.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,