Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7233557 | Biosensors and Bioelectronics | 2014 | 7 Pages |
Abstract
Miniaturized diagnostic devices hold the promise of accelerate the specific and sensitive detection of various biomarkers, which can translate into many areas of medicine - from cheaper clinical trials, to early diagnosis and treatment of complex diseases. Therefore, we report on a disposable integrated chip-based capillary immunoassay featuring a microfluidic ELISA format combining electrochemical detection and low-cost fabrication employing a dry film photoresist, Vacrel® 8100. The readily accessible carboxylate groups on the material surface allow fast and high yield immobilization of biomolecules using amine-specific coupling via reactive esters requiring no laborious surface pretreatment. The integrated microfluidic system provides a convenient platform for a flow-through immunoassay. Capillary force is used for easy reagent delivery and loading the chip channel. We performed rapid quantification of serum level of substance P, a potential biomarker of acute neuroinflammation, using the developed microfluidic immunochip. Our miniaturized assay demonstrated a sensitive electrochemical detection of the antigen at 15.4 pg mlâ1 (11.5 pM) using only 5 µl of the biological fluid while cutting the total assay preparation time in half and the read-out time to 10 min. Combining microfluidics and fabrication suitable for mass production with the capability of testing clinically relevant samples creates conditions for the construction of low-cost and portable point of care diagnostic devices with minimal auxiliary electronics.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Josef Horak, Can Dincer, Hüseyin Bakirci, Gerald Urban,