Article ID Journal Published Year Pages File Type
7233605 Biosensors and Bioelectronics 2014 7 Pages PDF
Abstract
Self-powered active biosensor has been realized from ZnO nanowire (NW) nanogenerator (NG). The piezoelectric output generated by ZnO NW NG can act not only as a power source for driving the device, but also as a biosensing signal. After immersing in 10−3 g ml−1 human immunoglobulin G (IgG), the piezoelectric output voltage of the device under compressive deformation decreases from 0.203±0.0176 V (without IgG) to 0.038±0.0035 V. Such a self-powered biosensor has higher response than transistor-type biosensor (I-V behavior). The response of self-powered biosensor is in a linear relationship with IgG concentration (logarithm, 10−7-10−3 g ml−1) and the limit of detection (LOD) on IgG of the device is about 6.9 ng ml−1. The adsorption of biomolecules on the surface of ZnO NWs can modify the free-carrier density, which vary the screening effect of free-carriers on the piezoelectric output. The present results demonstrate a feasible approach for actively detecting biomolecules by coupling the piezotronic and biosensing characteristics of ZnO NWs.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,