Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7233618 | Biosensors and Bioelectronics | 2014 | 11 Pages |
Abstract
This paper describes a rapid, ultra-sensitive, and high-throughput pathogenic DNA identification strategy for infectious diarrheal diseases diagnosis. This strategy is based on specific DNA hybridization and horseradish-peroxidase-catalyzed chemiluminescence (CL) detection. Probe DNA strands are covalently immobilized on the aldehyde-group-modified slide and hybridized with biotin-modified target DNA strands. Horseradish-peroxidase (HRP) is then combined with the target DNA via a biotin-streptavidin linkage. The subsequently added mixture of luminol and hydrogen peroxide is catalyzed by HRP and radiates photons. The photons are collected and read out by a portable imager. The specific detection of target DNA strands was realized at a detection limitation of about 0.75Â nM. This strategy facilitates quantitative detection, as indicated by the fact that the CL signals were consistent well with a linear function. This method was applied to identify a myriad of real diarrheal pathogens samples, including Enterohemorrhagic Escherichia coli (EHEC), Vibrio cholerae (VBC), Shigella (SHLA), and Salmonella (SMLA). Triple-assay of six gene sequences from these pathogens was realized, which facilitates accurate, high-throughput identification of diarrheal pathogens. This CL assay strategy is appropriate for application in disease diagnosis and prevention.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Chaoguang Wang, Rui Xiao, Peitao Dong, Xuezhong Wu, Zhen Rong, Lin Xin, Jun Tang, Shengqi Wang,