Article ID Journal Published Year Pages File Type
7233988 Biosensors and Bioelectronics 2013 6 Pages PDF
Abstract
In this paper, we propose a radio-frequency (RF) biosensor platform based on oscillation frequency deviation at 2.4 GHz. Its feasibility is experimentally demonstrated with the well-known biomolecular binding systems such as biotin-streptavidin and deoxyribonucleic acid (DNA) hybridization. For a basic principle of our biosensing system, the impedance of a resonator with the biomolecular immobilization is at first varied so that the corresponding change results in frequency change of an oscillator. Especially, to enhance the sensitivity of the proposed system, a surface acoustic wave (SAW) filter having a high-Q factor (~2000) is utilized. From the resulting component, even a small change of oscillation frequency can be transformed into a large output amplitude variation. According to the experimental results, it is found that our system shows the low detectable limit (~1 ng/ml) and fast response time (~real-time) for different target biomolecules, i.e. streptavidin and complementary DNA (cDNA). As a result, we find that our device is an effective biosensing system that can be used for a label-free and real-time measurement of the biomolecular binding events.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,