Article ID Journal Published Year Pages File Type
7242636 Journal of Economic Behavior & Organization 2018 62 Pages PDF
Abstract
A basic problem in empirical economics involves using data from one domain to make out-of-sample predictions for a different, but related environment. When the choice data are binary, a canonical method for making these types of predictions is the logistic choice model. This paper investigates whether it is possible to improve out-of-sample predictions by changing two aspects of the canonical approach: 1) Using response times in addition to the choice data, and 2) Combining them using a model from the psychology and neuroscience literature, the Drift-Diffusion Model (DDM). Two experiments compare the out-of-sample choice prediction accuracies of both methods and in both cases the DDM method outperforms a logistic prediction method. Furthermore, the DDM allows for out-of-sample process predictions. Both experiments validate the DDM as a method for predicting out-of-sample response times.
Related Topics
Social Sciences and Humanities Economics, Econometrics and Finance Economics and Econometrics
Authors
,