Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7242636 | Journal of Economic Behavior & Organization | 2018 | 62 Pages |
Abstract
A basic problem in empirical economics involves using data from one domain to make out-of-sample predictions for a different, but related environment. When the choice data are binary, a canonical method for making these types of predictions is the logistic choice model. This paper investigates whether it is possible to improve out-of-sample predictions by changing two aspects of the canonical approach: 1) Using response times in addition to the choice data, and 2) Combining them using a model from the psychology and neuroscience literature, the Drift-Diffusion Model (DDM). Two experiments compare the out-of-sample choice prediction accuracies of both methods and in both cases the DDM method outperforms a logistic prediction method. Furthermore, the DDM allows for out-of-sample process predictions. Both experiments validate the DDM as a method for predicting out-of-sample response times.
Related Topics
Social Sciences and Humanities
Economics, Econometrics and Finance
Economics and Econometrics
Authors
John A. Clithero,