Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
724962 | The Journal of China Universities of Posts and Telecommunications | 2014 | 8 Pages |
Abstract
A hands-free method is proposed to control an electric powered wheelchair (EPW) based on surface electromyography (sEMG) signals. A CyberLink device is deployed to obtain and analyze forehead sEMG signals generated by the facial movements. The autoregressive (AR) model is used to extract sEMG features. Then, the back-propagation artificial neural network (BPANN) is proposed to recognize different facial movement patterns and improved by Bayesian regularization and Levenberg-Marquardt (LM) algorithm. A sEMG based human-machine interface (HMI) is designed to map facial movement patterns into corresponding control commands. The experimental results show that the method is simple, real-time and have a high recognition rate.
Related Topics
Physical Sciences and Engineering
Engineering
Electrical and Electronic Engineering