Article ID Journal Published Year Pages File Type
725651 Journal of Electrostatics 2010 6 Pages PDF
Abstract

This paper reports the experimental and theoretical analysis of the ionic wind velocity and electrical-to-kinetic energy conversion efficiency in an ionic wind generator with six stages in series. Each stage contained a pair of cylindrical multipin-to-ring electrodes. The experiments were carried out in a negative dc corona discharge and the experimental results showed that both the velocity and efficiency are proportional to the square root of the number of stages. The efficiency was found to be proportional to the wind velocity within the experimental range. It was also confirmed that the wind velocity is proportional to the square root of the current and a linear function of voltage. Approximately 1.0% conversion efficiency and stable volumetric flow of more than 2000 L/min were achieved experimentally.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,