Article ID Journal Published Year Pages File Type
726203 Journal of Electrostatics 2006 9 Pages PDF
Abstract

Scanning probe microscopy(SPM)-based nanolithography with injected charges into layered electrets, such as silicon dioxide (SiO2) and silicon nitride, is a promising tool with far-reaching applications, such as controlled nano-assembly of macro-molecules and data storage. Despite its potential, some practical limitations exist. This paper describes an experimental investigation of the process of charging and charge dissipation in SiO2 using an AFM probe tip and surface potential (Kelvin probe) microscopy. The stability of charge bits on hexamethyl disilazane(HMDS)-treated SiO2 under low dielectric constant liquids, fluorocarbon, and benzene has been demonstrated. Results from a numerical simulation of a theoretical charging model, in which the charge traps are assumed to be localized on the silicon/SiO2 interface, are also presented. The charge transport mechanism considered is modified Fowler–Nordheim tunneling.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, ,