Article ID Journal Published Year Pages File Type
726744 Journal of Electrostatics 2013 4 Pages PDF
Abstract

The environmental pollution is a central issue in the present industrial societies. Within that the air pollution and the removal of hazardous components of flue and exhaust gases are very much important.In this paper the target is to decrease of the NOx emission by means of a technology similar to that is used in the electrostatic precipitators. In most of the papers dealing with this technique cylindrical precipitator is used as a discharge chemical reactor, and fast rising electric discharges are applied for energizing the reactor. In the industry the over helming majority of the electrostatic precipitators are plate type one.In the cylindrical precipitator the discharge electrode is parallel with the gas flow, and the corona discharge filament is perpendicular to both of them. In the case of plate type industrial electrostatic precipitator the discharge electrodes are positioned vertically, and the flow of the flue gas is horizontal. Consequently, the discharge filaments are mainly perpendicular to both the flow and the discharge electrode.In cylindrical precipitator the decomposition of NOx is done in one filament very soon, but there is no chance to modify the byproducts with a new pulse, because the energization is the same for the whole length of the discharge electrode.In the present paper a cylindrical precipitator, a plate type precipitator with horizontal electrode, and a plate type precipitator with vertical electrode were tested. The total length of the discharge electrodes of all of the precipitators was the same.The results of the NOx decomposition were experimentally determined, and the differences between the precipitators were investigated. The cylindrical and the plate type precipitators with vertical electrodes had shown basically similar decomposition rate, while the plate type one with horizontal discharge electrode had proven inferior to the others.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,