Article ID Journal Published Year Pages File Type
726825 Materials Science in Semiconductor Processing 2013 10 Pages PDF
Abstract

In this work, various techniques such as differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible-near infrared (UV-vis-NIR), photoluminescence (PL), >as well as electrical and sensor techniques have been used for the characterization of indium oxide (In2O3) nanoparticles. Here, we also provide insight regarding the optical and electrical characteristics of In2O3 nanostructures. The impact of highly sensitive and fast responding gas sensors using In2O3 nanostructures is also discussed. It is found that the as-prepared In2O3 powder is a pure single phase and is stable up to 800 °C. The size of the particles is in the range of 12 nm as determined by transmission electron microscopy (TEM). The band gap was found to vary linearly with the annealing temperature. A good sensitivity up to 400 ppm was obtained for ethanol and a mechanism is proposed.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,