Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
727441 | Measurement | 2013 | 6 Pages |
Vibration signals measured from a gearbox are complex multi-component signals, generated by tooth meshing, gear shaft rotation, gearbox resonance vibration signatures and a substantial amount of noise. This article presents a novel scheme for extracting gearbox fault features using adaptive filtering techniques for enhancing condition features, meshing frequency sidebands. A modified least mean square (LMS) algorithm is developed and validated using only one accelerometer, instead of using two accelerometers in traditional arrangement, as the main signal and a desired signal is artificially generated from the measured shaft speed and gear meshing frequencies. The proposed scheme is applied to a signal simulated from gearbox frequencies with a numerous values of step size. Findings confirm that 10−5 step size invariably produces more accurate results and there has been a substantial improvement in signal clarity (better signal-to-noise ratio); which make meshing frequency sidebands more discernible. The developed scheme is validated via a number of experiments carried out using two-stage helical gearbox for a pair of healthy gears and one pair suffering from a tooth breakage with severity fault 1 (25% tooth removal), and fault 2 (50% tooth removal) under loads (0%, and 80% of the total load). The experimental results show remarkable improvements and enhance gear fault features. This paper illustrates that the new approach offers a more effective way to detect early faults.
► We developed an automated strategy for extracting condition features within gearbox vibration signals. ► We examined the developed system and found it easy to implement and accurate. ► We validated the developed scheme by a series of experiments on healthy and faulty helical gearbox. ► The developed system offers good tool which could be used for other types of machinery.