Article ID Journal Published Year Pages File Type
7279817 Brain, Behavior, and Immunity 2017 42 Pages PDF
Abstract
Neuroinflammation is a pathological hallmark and has been implicated in the pathogenesis of Japanese encephalitis. Although brain pericytes show regulatory effects on neuroinflammation, their involvement in Japanese encephalitis-associated neuroinflammation is not understood. Here, we demonstrated that brain microvascular pericytes could be an alternative cellular source for the induction and/or amplification of neuroinflammation caused by Japanese encephalitis virus (JEV) infection. Infection of cultured pericytes with JEV caused profound production of IL-6, RANTES, and prostaglandin E2 (PGE2). Mechanistic studies revealed that JEV infection elicited an elevation of the toll-like receptor 7 (TLR7)/MyD88 signaling axis, leading to the activation of NF-κB through IKK signaling and p65 phosphorylation as well as cAMP response element-binding protein (CREB) via phosphorylation. We further demonstrated that extracellular signal-regulated kinase (ERK) could be an alternative regulator in transducing signals to NF-κB, CREB, and cytosolic phospholipase A2 (cPLA2) through the phosphorylation mechanism. Released IL-6 and RANTES played an active role in the disruption of endothelial barrier integrity and leukocyte chemotaxis, respectively. cPLA2/PGE2 had a role in activating NF-κB and CREB DNA-binding activities and inflammatory cytokine transcription via the EP2/cAMP/PKA mechanism in an autocrine loop. These inflammatory responses and biochemical events were also detected in the brain of JEV-infected mice. The current findings suggest that pericytes might have pathological relevance in Japanese encephalitis-associated neuroinflammation through a TLR7-related mechanism. The consequences of pericyte activation are their ability to initiate and/or amplify inflammatory cytokine expression by which cellular function of endothelial cells and leukocytes are regulated in favor of CNS infiltration by leukocytes.
Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , , ,