Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
728045 | Materials Science in Semiconductor Processing | 2015 | 7 Pages |
The effects of the n-contact design and chip size on the electrical, optical and thermal characteristics of thin-film vertical light-emitting diodes (VLEDs) were investigated to optimize GaN-based LED performance for solid-state lighting applications. For the small (chip size: 1000×1000 µm2) and large (1450×1450 µm2) VLEDs, the forward bias voltages are decreased from 3.22 to 3.12 V at 350 mA and from 3.44 to 3.16 V at 700 mA, respectively, as the number of n-contact via holes is increased. The small LEDs give maximum output powers of 651.0–675.4 mW at a drive current of 350 mA, while the large VLEDs show the light output powers in the range 1356.7–1380.2 mW, 700 mA, With increasing drive current, the small chips go through more severe degradation in the wall-plug efficiency than the large chips. The small chips give the junction temperatures in the range 51.1–57.2 °C at 350 mA, while the large chips show the junction temperatures of 83.1–93.0 °C at 700 mA, The small LED chips exhibit lower junction temperatures when equipped with more n-contact via holes.