Article ID Journal Published Year Pages File Type
728049 Materials Science in Semiconductor Processing 2015 5 Pages PDF
Abstract

This paper proposes the use of undoped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) deposited on the n-μc-Si:H layer of amorphous silicon single-junction superstrate configuration thin-film solar cells produced through 40 MHz very high frequency plasma-enhanced chemical vapor deposition. Raman spectroscopy and optoelectronic analyses of the undoped μc-SiOx:H thin film revealed that adding a small amount of oxygen into a μc-network results in a low optical absorption, wide band gap, high optical band gap E04, high refractive index, reasonable conductivity, and crystalline volume fraction, which are advantageous properties in solar cells. Compared with a standard cell, the current density–voltage (J–V) characteristics of the cell with an undoped μc-SiOx:H/n-μc-Si:H structure showed an enhancement in short-circuit current density Jsc from 13.32 to 13.60 mA/cm2, and in conversion efficiency from 8.53% to 8.61%. The increased Jsc mechanism can be attributed to an improved light-trapping capability in the long wavelength range between 510 and 660 nm, as demonstrated by the external quantum efficiency.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , ,